If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-4x-2=0
a = 20; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·20·(-2)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*20}=\frac{4-4\sqrt{11}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*20}=\frac{4+4\sqrt{11}}{40} $
| 9x+4=-5+7x+21 | | 4x^2-4x=200 | | 2.3+y/4=-4.1 | | 5/8+3/4=2x | | (7x-5)(3x^2-11x+4)=0 | | -3(6x-5)=-141 | | 5x-45-5x=3x-15-5x | | -13x-21=2x-6 | | 438+23+8x=7 | | (x+2)^2+12(x+2)+32=0 | | 5-(9*6x)=2x-2 | | 43+23+8x=7 | | 14x-42=11(x+11) | | .06x+.07(28,000-x)=3500 | | 3+3x-10=5x+3- | | 7+1x=9 | | 4-(-9x)=-14 | | 19-x=-2(x-8) | | 1200-4h=1800-60h | | F(2)=x(2)+16(x)-46 | | 3(5x+8)=15x+24 | | ((12+14)*h)/2=52 | | 6=8x+5 | | 105=7(v+8) | | 3/2p-14=p*13 | | 6.28=3.14r | | -2-0.75x=-2 | | 20-2z=3z | | 5x=3(x+20) | | 5(r-3)-4r=-13+1 | | F(x)=x2+16x-46 | | x+10=14-10(x+8) |